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Abstract— Human-centered interactive robot tasks (e.g., so-
cial greetings and cooperative dressing) are a type of task
where humans are involved in task dynamics and perfor-
mance evaluation. Such tasks require spatial and temporal
coordination between agents in real-time, tackling physical
limitations from constrained robot bodies, and connecting
human user experience with concrete learning objectives to
inform algorithm design. To solve these challenges, imitation
learning has become a popular approach whereby a robot learns
to perform a task by imitating how human experts do it (i.e.,
expert policies). However, previous works tend to isolate the
algorithm design from the design of the whole learning pipeline,
neglecting its connection with other modules inside the process
(like data collection and user-centered subjective evaluation)
from the view as a system. Going beyond traditional imita-
tion learning, this work reexamines robot imitation learning
in human-centered interactive tasks from the perspective of
the whole learning pipeline, ranging from data collection to
subjective evaluation. We present a process-oriented framework
that consists of a guideline to collect diverse yet representative
demonstrations and an interpreter to explain subjective user-
centered performance with objective robot-related parameters.
We illustrate the steps covered by the framework in a fist-
bump greeting task as demonstrative deployment. Results show
that our framework is able to identify representative human-
centered features to instruct demonstration collection and
validate influential robot-centered factors to interpret the gap
in subjective performance between the expert policy and the
imitator policy.

Index Terms— imitation learning, social greeting, human-
centered interactive tasks

I. INTRODUCTION

Human-centered interactive robot tasks are tasks in which
humans are involved in the task dynamics and the evaluation
of robot performance is highly dependent on human-centered
experience. These include for example social greetings [1],
cooperative dressing [2], or social navigation [3]. These
tasks are challenging since they require spatial and temporal
coordination between agents in real-time, tackling physical
limitations from constrained robot bodies, and connecting

human-centered experience with concrete algorithm-wise
learning objectives. Some rule-based methods [4], [5] tried
to hardcode interactive responses based on empirical obser-
vation, but they can hardly be robust enough for unseen
situations and universal for different social agents. Alter-
natively, data-driven methods [1], [6]–[8] trained the robot
with demonstrations from human-human or human-robot
interaction, aiming to imitate how human experts perform
the tasks (i.e., expert policies). However, these imitation-
based approaches mainly focused on improving the algorithm
itself and neglect the potential benefits it might bring if more
careful attention is paid to other modules inside the design of
the learning pipeline, such as data collection and subjective
evaluation. This work reexamined robot imitation learning
for human-centered interactive tasks from the view of the
whole learning pipeline, which we refer to as the “process-
oriented” perspective. More specifically, our work aims to
tackle two research questions:

• Q1: How to collect diverse and representative demonstra-
tions for human-centered interactive tasks?

• Q2: How to elicit objective robot-related factors to inter-
pret subjective user evaluations of robot performance and
consequently inform algorithm refinement?

For Q1, it has been shown that the performance of
imitation-based methods relies heavily on the amount and
quality of training data [9], [10]. Unfortunately, conditions
often only afford limited amounts of data, especially for
human-centered interactive tasks where real humans are
always required to be present in the loop, which makes
a well-designed process for data collection even more im-
portant. However, how to collect diverse yet representa-
tive demonstration data within the data budget remains an
open question. For Q2, it is common to evaluate robot
performance using subjective metrics [11], [12] in human-
centered tasks like social greetings, since it relates more



Fig. 1. Overview of our framework and the structure for this paper.

closely to the user experience. However, just knowing how
satisfied the human partner feels hardly speaks for how the
robot could concretely improve its policy. It would be more
improvement-informative if more robot-centered factors that
are objective and tuneable could be identified from general
subjective metrics. Such objective factors would provide
more support to refine learning algorithms to better adapt
to user experience, as well as to explain and predict the
subjective experience for early intervention. Despite all these
benefits, how to identify objective and robot-centered factors
from subjective metrics has not yet been fully investigated.

Therefore, we contributed a process-oriented framework
(summarized in Fig. 1) to, first, identify human-centered
features to inform the collection of diverse and represen-
tative demonstrations and, second, validate objective robot-
centered factors to explain subjective robot performance. Our
contributions can be summarized as follows:
• A guideline to collect diverse and representative demon-

stration data for human-centered interactive tasks.
• An experimental method to elicit objective robot-centric

factors from subjective evaluation to interpret subjective
performance gap.

• A demonstrative deployment of our framework in the real-
world task of fist-bump greeting.

II. RELATED WORK

A. Robot Learning in Human-Centered Interactive Tasks
Previous work investigated various methods to equip

robots with skills for human-centered interactive tasks. Some
work employed rule-based methods to control robot be-
haviors [4], [5]. More advanced methods utilized data-
driven methods to imitate human policies from human-
human demonstration [1], [6]–[8]. However, few of them
tested their methods on an embodied robot to interact with a
group of different human agents and retrospected the robot
learning from the perspective of the whole learning pipeline
(i.e., from data collection to user experience) as opposed to
only focusing on algorithm design.

B. Data Collection in Imitation Learning
The performance of learning-based methods is closely

related to the quality and quantity of training data [9].

Specifically, data diversity is of great significance to the
learning process [10]. To obtain diverse training data, it is
common in the field of HRI to collect human data without
intervention to capture natural interactions. For instance,
researchers of social-aware navigation placed recording de-
vices in public spaces and gathered human trajectories from
various perspectives [13]. Similarly, for social greeting tasks,
previous work also collected non-verbal behaviors in natural
human-human interaction without any exterior instruction
[14]. However, in trade for data diversity, such data collection
manner often comes with large time and effort cost. Few
work investigated into a more structured guideline for HRI
data collection that could guarantee data diversity within a
constrained data budget. Although [9] presented a workflow
for data collection, it did not further prove its functionality
in the frame of any learning-based algorithms.

C. Evaluation Metrics in Human-Centered HRI

In the field of HRI, it is common to employ subjective
metrics to evaluate robot performance. In terms of social
performance, metrics including trust [15], [16], engagement
[17], social compliance [18] are often used to describe robot
social effectiveness [11]. More systematic metrics like NASA
Task Load Index (TLX) [19] and Godspeed likeability [20]
are also commonly used to rate user experience from a
human-centered perspective. However, results from subjec-
tive evaluation are not much informative for algorithm de-
sign. Some work attempted to connect subjective evaluation
with objective metrics, but they were mainly focused on
supplementing [21], [22] or approximating subjective results
[12]. By contrast, our work tried to explain the results
of human-centered subjective evaluation with robot-centered
objective factors and inform algorithm refinement.

III. METHODOLOGY

Our framework consists of two experiment-based mod-
ules. The first module is the HBFs-informed guideline for
data collection, which is designed to enhance data quality
by facilitating the collection of diverse and representative
demonstrations. The second module is the RBFs-informed



interpreter for subjective performance, which aims to inter-
pret human subjective evaluations using objective factors to
better inform algorithm refinement.

A. Module 1: HBFs-Informed Guideline for Data Collection

1) Human Behavioral Features (HBFs):
We defined human behavioral features as dimensions that

could distinguish one person’s behavior from another. These
features are expected to be measurable and of practical
meaning. For example, in the task of fist-bump greeting,
an HBF could be the velocity at which the person’s hand
reaches out. These features can be designed through heuristic
observation or feature engineering techniques. However, how
to automate and optimize the design of HBFs is beyond the
scope of this work.

2) Procedures:
For a given human-centered task and Nhbf pre-defined

candidate HBFs, each human participant interacted with the
robot for Nhbf + 1 trials, where the robot was controlled
by a human expert via the method of Wizard-of-Oz. The
whole process consisted of three phases, as shown in Fig. 2.
Human participants first intuitively interacted with the robot,
and we collected the resultant trajectory ξi that consisted
of T pairs of (st, at), i.e., ξi = {(st, at)}Tt=1. st was the
human-centered state of the participant and at was the robot
action. For instance, in the task of fist-bump greeting, st
could be the body pose of the participant and at could be
the robot joint values. We refer to this phase as natural data
collection, since no intervention or guidance was provided
to human participants during this process. The whole set
of demonstrations collected during this phase for all human
participants was denoted as Γnat = {ξi}Nh

i=1, where Nh was
the total number of human participants. After this phase, we
provided guidance to human participants, instructing them to
vary their original intuitive interactions along the dimension
of each candidate HBF. This led to a demonstration set
Γk
hbf = {ξi}Nh

i=1 for each candidate HBF k. We refer to
this phase as guided data collection and denote the resultant
whole set of demonstrations as Γguid = {Γk

hbf}
Nhbf

k=1 .
After two phases of data collection, we utilized Feature

Selection (FS) to identify representative HBFs from candi-
date HBFs as valid dimensions to differentiate behaviors of
human participants and sorted out the representative demon-
strations from Γguide. We refer to this phase as representative
demonstration curation. Since the collected demonstrations
were essentially trajectories and candidate HBFs were indeed
the features to characterize each trajectory, therefore it falls
into the category of Unsupervised Feature Selection (UFS)
and we chose to employ the classic filter-based UFS method
using Laplacian Score (LS) [23] for its independence from
learning algorithms and flexible usability. The smaller the
Laplacian score Lr of a feature is, the more important the
feature is. We used the demonstrations Γnat from the phase
of natural data collection to calculate the Laplacian score for
each of the candidate HBFs and chose the top Nrep as the
representative HBFs. We then only kept the demonstrations

Γk
hbf of each representative HBF k in Γguid, producing the

final filtered demonstration set Γrep
guid = {Γk

hbf}
Nrep

k=1 .

Fig. 2. Procedures of HBFs-informed guideline for data collection.

B. Module 2: RBFs-Informed Interpreter for Subjective Per-
formance

1) Robot Behavioral Factors (RBFs):
We defined the Robot Behavioral Factors (RBFs) as ob-

jective and controllable parameters of robot behaviors that
may influence subjective evaluation of robot performance
in human-centered tasks. For instance, in the task of fist-
bump greeting, an RBF can be the reaching velocity of
the robot fist. Similar to HBFs, RBFs can be crafted either
through task-oriented observation or generated using feature
engineering techniques.

2) Procedures:
As shown in Fig. 3, for a given task and predefined Nrbf

candidate RBFs, each human subject interacted with the
robot for Nrbf trials, during which the robot was controlled
by an expert human teacher via the method of Wizard-of-
Oz. During trial i, human participants interacted with the
robot twice, once while the robot was in “normal mode”
and once in “diversion mode”. In the normal mode, human
participants intuitively interacted with the “puppet” robot,
which followed the exact command from the “performer”
robot that was physically controlled by the expert human
teacher. By contrast, in the diversion mode, we hardcoded
the puppet robot to deliberately divert from the original
behaviors of the performer robot along the dimension of the
candidate RBF i. To enable human participants to detect
the distinction between the two modes, we produced the
puppet behaviors in diversion mode via a constant divergence
ratio rdiv = |ϕi

nor − ϕi
div| / |ϕi

nor|, where ϕi
nor and ϕi

div

represented the value of RBF i in the normal and diversion
mode respectively. Upon completion of both modes, every
human subject was requested to rate the robot’s performance
in the task using a 5-point Likert Scale, where 1 indicates
“very poor” and 5 indicates “excellent”.

Once all Nrbf trials were finished, paired samples t-tests
would be conducted for each candidate RBF to investigate
the influence of the control mode on subjective scores.
Candidate RBFs that exhibited significant differences in sub-
jective scores between the two modes would be identified as
influential RBFs. These influential RBFs served as the output
for the module of the RBFs-informed interpreter. When test-
ing imitation learning algorithms for human-centered tasks,
these influential RBFs can be used to explain the gap in
subjective performance between different baselines. How to
utilize them to interpret subjective results will be illustrated
in the demonstrative application discussed in section VI.



Fig. 3. Procedures of RBFs-informed interpreter

IV. DEMONSTRATIVE DEPLOYMENT IN THE TASK OF
FIST-BUMP GREETING

We demonstrated how to deploy our framework in human-
centered interactive tasks using the fist-bump greeting as
the benchmark task. We chose it to showcase the demon-
strative deployment since it is one of the most typical
human-centered interactive tasks that can fully reflect the
characteristics of such task type: humans play their roles in
task dynamics and the evaluation of robot performance is
dependent on subjective user experience. Using Behavioral
Cloning (BC) as the representative algorithm for imitation
learning, we further extended the deployment with an eval-
uation study, aiming to investigate the potential benefits the
module of the HBFs-informed guideline may bring to robot
learning and how the module of RBFs-informed interpreter
could be utilized to explain the results of subjective per-
formance. All collected demonstrations were available at
https://github.com/MH-Hou/process-oriented-framework.git.

A. Demonstrative Deployment of the Framework

1) Task Settings for fist-bump greeting:
In the task of fist-bump greeting, human agents played the

role of “initiator” by first reaching out their fists to the robot
for bumping. By contrast, the robot responded to the greeting
by reaching its fist to meet the human fist and putting it back
in an adaptive and timely manner.

We defined the state st as a temporal sequence of hu-
man body poses for the past w time steps, i.e., st =
[Pt−w+1, Pt−w+2, ..., Pt]. Pt is the human body poses at
time step t and it consists of 3D positions of land-
marks including right wrist and right elbow (i.e., Pt =
[pwrist

t , pelbowt ]). We defined the action at as the joint values
for the robot right arm (i.e., shoulder, elbow, and wrist)
and hip, i.e., at = [qShP

t , qShR
t , qElY

t , qElR
t , qWrY

t , qHpR
t ].

qShP
t and qShR

t represent the pitch and roll of the right
shoulder joint, qElY

t and qElR
t represent the yaw and roll

of the right elbow joint, and qWrY
t represents the right wrist

yaw. Similarly, qHpR
t refers to the joint value of hip roll.

One complete episode consists of 60 steps, i.e., T = 60.
2) Instantiation of HBFs and RBFs:
For the task of fist-bump greeting, we concreted the

following 4 candidate HBFs based on heuristic observation:
• average hand-reaching velocity (HBF-1): It refers to the

average velocity of the human hand in the period that the
hand has been reaching towards the robot until it stops and
waits for the bumping from the robot fist.

• fist-holding duration (HBF-2): It is defined as the time
duration starting from the human agent holding the fist still
for bumping to the moment of withdrawing the fist.

• fist-bumping height (HBF-3): It refers to the height of
the human fist in the world frame when it is held still for
bumping.

• average hand-withdrawing velocity (HBF-4): It is de-
fined as the average velocity of the human hand in the
period that the human starts to withdraw the fist until it is
fully put back and stays still at one side of the body.

For the module of RBFs-informed interpreter, we set the
divergence ratio rdiv as 0.5 and instantiated the following 6
candidate RBFs based on heuristic observation:

• robot hand-reaching delay (RBF-1): It refers to the time
delay between the moment of the human agent reaching
out the fist towards the robot and that of the robot reaching
out its hand towards the human.

• robot hand-reaching velocity (RBF-2): It refers to the
average velocity of the robot hand during the process it
reaches towards the human fist.

• bumping position offset (RBF-3): It refers to the distance
between the human fist and the robot fist when both of
them are holding still for the bumping action.

• robot torso movement (RBF-4): It refers to the movement
of the robot’s upper body. More specifically, it can be
counted as the average deviation of the hip joint value
during the whole greeting process.

• bumping fist orientation (RBF-5): It refers to the fist
orientation of the robot hand when it holds still for the
bumping action. In our case, it can be calculated as the
angle of the robot wrist rotating along the central axis of
its forearm.

• robot hand-withdrawing delay (RBF-6): It refers to
the time delay between the moment of the human agent
withdrawing the hand and that of the robot withdrawing
its hand.

3) Hardware:
We used the humanoid robot Pepper of the SoftBank

Robotics company for all experiments, shown in Fig. 4.
We used an RGB-camera to capture real-time human body
poses and estimated the 3D positions of pose landmarks via
MediaPipe [24].

4) Participants:
Following the ethical guidelines by our faculty’s research

ethics board, we recruited 15 human participants (9 male
and 6 female) from campus via poster advertisement. 11 of
them were aged between 18 to 29 and 4 of them were aged
between 30 to 39. In terms of the experience of interacting
with a robot, 3 of them had no previous experience, 10 of
them indicated some experience, and 2 of them had extensive
experience. After the experiments finished, participants were
compensated with a digital gift card of C10 for participation.

B. Evaluation Study

1) BC Model Training:
The structure of the BC model was illustrated in Fig. 5.

We optimized BC models by minimizing the loss function



Fig. 4. Demonstrative deployment in the benchmark task of fist-bump.

L constructed by the cross entropy and expressed as:

L = − 1

Ns

Ns∑
i=1

log(P̃ (aexi |sexi )) (1)

where Ns represents the total number of samples in demon-
stration data and P̃ (aexi |sexi ) represents the probability of
expert action aexi under the expert state sexi .

We trained each BC model using the Adam optimizer with
a constant learning rate of 0.001 and L2-norm regularization
with a regularization rate lambda of 0.001. We trained each
BC model for 500 epochs with a batch size of 60.

2) Participants:
Following the same ethical guideline as in section IV-A, we
invited another group of 16 human participants (10 male,
5 female, and 1 other gender) from campus via poster
advertisement. 2 of them were aged 17 or under, 11 of them
were aged between 18 to 29, 1 of them was aged between 30
to 39, and 2 of them were aged between 40 to 49. Regarding
the experience of interacting with a robot, 7 of them had no
previous experience, 6 of them indicated some experience,
and 3 of them had extensive experience. Participation was
compensated with a digital gift card of C10.

3) Procedures:
We trained two BC models respectively with the demon-

strations collected in the phase of natural data collection
(i.e., Γnat) and guided data collection (i.e., Γrep

guid). For a

Fig. 5. The Neural Network architecture for our Behavioral Cloning model.
The input is the state st defined as the 3D body poses of the human for the
past w time steps. We used w = 10 and 6 landmarks, leading to an input
dimension of 60. µ and σ represent the mean and standard deviation of the
probability distribution of output action at.

fair comparison, we randomly sampled from the filtered
demonstration set Γrep

guid to obtain an equal amount of demon-
strations as Γnat. For convenience, we denoted the resultant
BC models as natural BC model and guided BC model
respectively.

To evaluate the subjective performance of the guided BC
model, we conducted an evaluation study that consisted of
3 sections of experiments. In each section, the robot was
controlled by a different policy (i.e. the guided BC model,
or Wizard-of-Oz). Human participants conducted fist-bump
with the robot in their most intuitive ways and scored robot
performance via a 5-point Likert Scale where 1 represents
“very poor” and 5 represents “excellent”. A 1-minute break
followed after human participants finished evaluating and
then we repeated this “greet-evaluate” procedure until all
sections were completed. For the concern of the carryover
effect, we randomly selected the section order for each
human subject.

To further investigate the potential benefits the module
of the HBFs-informed guideline could bring to robot learn-
ing, we also compared the imitation performance of two
trained BC models. Using the Wizard-of-Oz demonstrations
collected during the evaluation experiments as the testing
expert demonstrations, we evaluated how closely the trained
BC model resembled an expert demonstration ξe via the
imitation error eimit defined as:

eimit =
1

T

∑
(ae

t ,s
e
t )∈ξe

∥πBC(set )− aet∥ (2)

where T is the total number of state-action pairs in the expert
demonstration ξe and πBC is the trained BC policy.

V. RESULTS

A. Results for HBFs-Informed Guideline

After calculating the candidate HBFs for each demon-
stration in Γnat and applying feature selection to each
candidate HBF, we obtained their corresponding Laplacian
Scores shown in Table I. Since a lower Laplacian Score
indicates a more important feature, the results showed that
human behaviors in fist-bump greeting were mostly different
from each other in the aspect of average hand-withdrawing
velocity (i.e., HBF-4), followed by average hand-reaching
velocity (i.e., HBF-1), fist-holding duration (i.e., HBF-2), and
fist-bumping height (i.e, HBF-3). Furthermore, since there
was a large gap between the Laplacian Score of HBF-2
and HBF-3, it indicated that human behaviors in fist-bump
greeting were far less different regarding the fist-bumping
height, as compared with other potential HBFs. Therefore,
we ruled out the HBF-3 and considered HBF-4, HBF-1, and
HBF-2 as the representative HBFs (i.e., Nrep = 3).

TABLE I
FEATURE SELECTION RESULTS FOR CANDIDATE HBFS

HBF-1 HBF-2 HBF-3 HBF-4

Laplacian Score 0.111 0.248 0.649 0.0827



B. Results for RBFs-Informed Interpreter

For each candidate RBF, we conducted a paired samples
t-test to investigate the influence of the control mode on
subjective scores, shown in Fig. 6. More specifically:
• RBF-1 (robot hand-reaching delay): There was a signifi-

cant difference in subjective scores between normal mode
(M = 3.73, SD = 0.77) and diversion mode (M =
2.46, SD = 0.88); t(14) = 3.68, p < .05 with a large
effect size (Cohen’s d = 1.47).

• RBF-2 (robot hand-reaching velocity): There was a sig-
nificant difference in subjective scores between normal
mode (M = 3.73, SD = 0.68) and diversion mode
(M = 2.53, SD = 0.81); t(14) = 4.94, p < .001 with a
large effect size (Cohen’s d = 1.56).

• RBF-3 (bumping position offset): There was a signifi-
cant difference in subjective scores between normal mode
(M = 3.33, SD = 1.07) and diversion mode (M =
2.53, SD = 0.81); t(14) = 2.70, p < .05 with a large
effect size (Cohen’s d = 0.81).

• RBF-4 (robot torso movement ): There was a marginally
significant difference in subjective scores between normal
mode (M = 3.87, SD = 0.72) and diversion mode (M =
3.2, SD = 1.17); t(14) = 2.00, p = .07 with a medium
effect size (Cohen’s d = 0.67).

• RBF-5 (bumping fist orientation): There was no signifi-
cant difference in subjective scores between normal mode
(M = 3.53, SD = 0.96) and diversion mode (M =
3.60, SD = 0.71); t(14) = −0.19, p = .85 with a small
effect size (Cohen’s d = 0.08).

• RBF-6 (robot hand-withdrawing delay): There was a sig-
nificant difference in subjective scores between normal
mode (M = 4.13, SD = 0.81) and diversion mode
(M = 3.20, SD = 0.98); t(14) = 3.76, p < .05 with
a large effect size (Cohen’s d = 1.01).

Since we found significant differences for RBF-1, RBF-2,
RBF-3, RBF-4, and RBF-6, we identified these candidate
RBFs as the influential RBFs, meaning they were able to
significantly influence subjective evaluation of robot perfor-
mance in the task of fist-bump greeting.

C. Results for Evaluation Study

To compare the subjective performance between the
guided BC model and Wizard-of-Oz, we conducted a paired
samples t-test to investigate the influence of the type of con-
trol policies on subjective scores. Results indicated that there
was no significant difference in subjective scores between
Wizard-of-Oz (M = 4.125, SD = 1.05) and the guided BC
model (M = 3.75, SD = 1.03); t(15) = 1.031, p = .32
with a small effect size (Cohen’s d = 0.35).

To explain the results of subjective performance with
influential RBFs, we also conducted a paired samples t-test
for each influential RBF to investigate the influence of the
type of control policies on the influential RBF, shown in Fig.
7. More specifically:
• RBF-1: There was no significant difference in the RBF

value between Wizard-of-Oz (M = 0.153, SD = 0.161)

and the guided BC model (M = 0.263, SD = 0.242);
t(15) = −1.380, p = .19 with a medium effect size
(Cohen’s d = 0.52).

• RBF-2: There was a significant difference in the RBF value
between Wizard-of-Oz (M = 0.457, SD = 0.248) and the
guided BC model (M = 0.227, SD = 0.230); t(15) =
4.211, p < .001 with a large effect size (Cohen’s d =
0.93).

• RBF-3: There was no significant difference in the RBF
value between Wizard-of-Oz (M = 0.594, SD = 0.231)
and the guided BC model (M = 0.600, SD = 0.196);
t(15) = −0.093, p = .93 with a small effect size
(Cohen’s d = 0.03).

• RBF-4: There was a significant difference in the RBF value
between Wizard-of-Oz (M = 0.311, SD = 0.154) and the
guided BC model (M = 0.726, SD = 0.126); t(15) =
−9.130, p < .001 with a large effect size (Cohen’s d =
2.85).

• RBF-6: There was a significant difference in the RBF value
between Wizard-of-Oz (M = 0.168, SD = 0.271) and the
guided BC model (M = 0.490, SD = 0.252); t(15) =
−3.51, p < .05 with a large effect size (Cohen’s d =
1.19).

To further explore the potential benefits that the module of
the HBFs-informed guideline may bring to robot learning, we
conducted a paired samples t-test to investigate the influence
of the type of BC models on the imitation error eimit.
We observed no significant difference in the imitation error
between the natural BC model (M = 0.444, SD = 0.159)
and the guided BC model (M = 0.492, SD = 0.123);
t(15) = −1.516, p = .15 with a small effect size
(Cohen’s d = 0.33).

VI. DISCUSSION

Our results from the demonstrative deployment and evalu-
ation study indicated that our framework was able to identify
representative HBFs for collecting diverse and representative
demonstrations. Furthermore, it could also elicit influential
RBFs to interpret the user-centered subjective evaluation with
objective robot-related parameters and utilize it to inform
algorithm refinement.

More specifically, for the results of the HBFs-informed
guideline, we found that human behavior in fist-bumping
greeting are most different from each other in aspects of
average hand-withdrawing velocity (i.e., HBF-4), average
hand-reaching velocity (i.e., HBF-1), and fist-holding dura-
tion (i.e., HBF-2). Although it was true that human heights
were diverse from each other and expected to be reflected in
their greeting interaction with the robot, they also tended to
adapt their greeting to that of the robot in such interactive
and cooperative task. In our case, the Pepper robot we used
was with a height of about 1.2m and an arm length of about
0.6m. This child-like body size was much smaller than that of
our human participants, making it more common for human
participants to adapt their greeting trajectories to the space
that the robot could reach. Therefore, it was reasonable that



Fig. 6. Results for subjective performance scores in the experiments of candidate RBFs in demonstrative deployment.

Fig. 7. Results for normalized values of influential RBFs in the experiments of the evaluation study.

human greeting behaviors varied less in fist-bumping height
(i.e., HBF-3) than other HBFs.

For the results of the RBFs-informed interpreter, we found
that robot hand-reaching delay (RBF-1), robot hand-reaching
velocity (RBF-2), bumping position offset (RBF-3), robot
torse movement (RBF-4), and robot hand-withdrawing delay
(RBF-6) were able to influence the subjective evaluation of
robot performance. This indicated that these influential RBFs
could be utilized to interpret the subjective results from
objective perspectives and might be able to better inform
the algorithm refinement if there exists a gap in subjective
performance between different baselines.

For the subjective performance of the guided BC model,
the results showed that it was not significantly different from
that of the method of Wizard-of-Oz. Considering that the
Wizard-of-Oz method actually represented the expert policy
that the BC model aimed to imitate, such a result indicated
a potentially positive effect of our HBFs-informed guideline
on subjective performance. However, further confirmation is
necessary through larger sample sizes and more extensive
experiments.

Furthermore, we found that, among all the influential
RBFs, robot hand-reaching velocity (RBF-2), robot torso
movement (RBF-4), and robot hand-withdrawing delay
(RBF-6) were significantly different between the Wizard-
of-Oz method and the guided BC model. More specifi-

cally, the guided BC model exhibited a slower robot hand-
reaching velocity, larger robot hand-withdrawing delay, and
larger torso movements, as compared with the Wizard-of-
Oz method. While a slower reaching velocity and larger
withdrawing delay lead to a less timely fist-bump, larger
torso movements make the robot more lively and adorable.
Indeed, some human participants made positive comments
about the robot employing the whole torso to do the fist-
bump greeting, as opposed to only using the right arm joints.
The differences in these three influential RBFs compensated
for each other, leading to an insignificant gap in subjective
performance between the Wizard-of-Oz and the guided BC
model. If more attention could be paid to the reaching
velocity and withdrawing delay (e.g., reweighting them in
the cost function), it might lead to further improvement of
robot performance in subjective evaluation.

For the potential learning benefits of the HBFs-informed
guideline, we found no significant improvement in imitation
performance between the guided BC model and the natural
BC model. One possible reason for this could be the limited
amount of demonstrations collected, given the data-intensive
nature of imitation learning algorithms. However, we believe
that with a larger number of demonstrations and testing ex-
periments conducted on a larger sample size, more noticeable
improvements can be achieved.



A. Limitations and Future Work
For the perception part of our work, we used a RGB-

camera without depth information. Although we fixated the
distance between the robot base and the standing position
of human participants during all the experiments, it would
yet cause inaccuracy in body pose estimation and impact the
quality of data collection. We plan to employ RBG-D camera
in the future to acquire more accurate perception of human
movement and allow for more flexible interaction between
humans and robots.

Also, we only indicated the possible correlation between
RBFs and subjective evaluation of robot performance without
further investigating how exactly these two were correlated
with each other. With further study in the future, it may bring
more concrete insights for the algorithm design of imitation-
based learning to perform better in subjective evaluation.

Lastly, we only built our studies around the task of fist-
bump as one of the most typical greeting behaviors. The
results may differ when it comes to other types of greeting
(e.g., handshaking and high-five) or even different types of
coordination-involved tasks (e.g., social-aware navigation).
In the future, we also plan to apply the results from this work
to a broader range of cooperative task settings and further
investigate the potential of imitation learning algorithms in
social interactive scenarios.

VII. CONCLUSION

In this work, we presented a process-oriented framework
of robot imitation learning for human-centered interactive
tasks. Different from previous works that were predomi-
nantly algorithm-centric, our framework reexamined robot
imitation learning from the perspective of the whole pro-
cess from data collection to subjective evaluation. More
specifically, it consisted of a guideline to collect higher
quality demonstrations that were diverse and representative
along important human-centered features (i.e., HBFs) and
an interpreter to explain the subjective results with robot-
centered objective parameters (i.e., RBFs). Furthermore, we
provided a demonstrative deployment of our framework in
the task of fist-bump greeting. Results indicated that human
fist-bump greetings were significantly diverse and distinct in
terms of hand-reaching velocity, fist-holding duration, and
hand-withdrawing velocity, which were able to be utilized
to instruct demonstration collection. Also, results showed
that robot subjective performance was influenced by hand-
reaching delay, hand-reaching velocity, bumping position
offset, torso movement, and hand-withdrawing delay. Fur-
thermore, the gap in subjective performance between the
expert policy and learned policy was able to be explained in
terms of robot hand-reaching velocity and torso movement.
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