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Abstract—This paper presents a novel device that can be
used to perform kinesthetic corrective feedback for robotic
systems. KRIS (Kinesthetic Robotic Interaction System) is a
device that can be mounted on the end-effector of an articulated
robot. From here it can be manipulated by a human to give
corrective feedback to the robot system during execution and
in an intuitive way. The device can provide feedback in six
degrees of freedom while giving passive haptic feedback to
the user about both the position, rotation, and movement of
the robot. We evaluated KRIS in a user study with respect
to a baseline based on keyboard feedback in the areas of
usability, intuitiveness, accuracy of corrections, and user task
load. KRIS outperformed our baseline on the first three metrics
and performed similar on task load. We believe that KRIS can
enable a wide variety of robots to be taught interactively by
non-expert humans in diverse collaborative settings.

Index Terms—Learning from Demonstrations, Physical
Human-Robot Interaction, Corrective Feedback, Robot Train-
ing Device, Human-Robot Collaboration

I. INTRODUCTION

Most robotic systems today have at some point been
explicitly programmed to perform a specific set of motions.
This is often done by a technical expert, rather than someone
with knowledge of the task or interaction at hand. While in
some cases, domain knowledge is not crucial, as soon as there
is an element of human-robot interaction this could become
problematic. Robot motion that is explicitly programmed can
often be inefficient [1], unintuitive, lacking legibility [2] and
hence potentially unsafe. Most importantly, pre-programmed
robot motions are difficult to adapt to new situations or to
adjust to meet personalized end user needs and preferences.

This often leads to robotic systems being separated from
humans. This separation occurs in terms of space (robots
being fenced off from humans for safety or convenience) and
in terms of collaboration dynamics (the robot performing its
task after which the human performs theirs). We believe that
by creating a system that democratizes the teaching of robotic
motion we can bring robots and humans closer together and
unlock a whole host of interesting possibilities for human-
robot collaboration. We could for example create robotic
systems that empower people to embed their task knowledge
within the robot’s behavior, or help robotic systems align
with diverse user needs and preferences [3].

The field of human robot interaction (HRI) has gained
considerable momentum over the past years. The literature
now describes a large variety of topics relating to HRI

including social navigation, tool transfer, preference learning,
imitation learning, etc. With this variety of topics, a variety
of devices that provide demonstrations or corrective feedback
have been described as well. However, we believe that many
of these input devices lack some of the basic characteristics
that would allow non-expert users to program robot behavior
in a flexible manner.

Bajcsy et al. (2017) claim that “robots should treat phys-
ical human interaction as useful information about how
they should be doing the task” [4]. Along these lines, in
this work we build on work in the field of Learning from
Demonstrations (LfD) to inform the design of an interactive
robot teaching system. The difference here will be that we
will use these means of demonstration as means of corrective
feedback during execution of robot motion. As a result,
the user is able to refine the current robot motion through
continuous interventions that interactively correct the current
trajectory according to the user’s kinesthetic input.

Many current input devices, such as joysticks or keyboards,
are not designed to be friendly to non-expert users and are
therefore not explicitly designed with intuitiveness in mind.
The human often has to commit a chunk of their mental
capacity to the mapping from interface inputs to robots
outputs, or to observing the current behavior of the robot.
This would take away from the mental capacity available for
the task at hand in a collaborative setting. Other solutions,
such as augmented reality or torque-based feedback, require
expensive sensors or equipment and are hence not ideal. Our
broad research question is therefore:
How can we facilitate kinesthetic teaching of autonomous
robot motion in a manner that is usable, intuitive, and
effective for non-expert teachers?

In answering this question we have created a device we call
KRIS (Kinesthetic Robotic Interaction System). The design
of KRIS makes it versatile with respect to a large variety
of articulated robotic systems. The system contains an inner
ring which is rigidly mounted on the robot (typically an
end-effector), and an outer ring suspended by a series of
springs around the inner ring. Thanks to magnetic sensors,
this structure acts as a conduit for the human’s kinesthetic
input, in a way that is more loosely physically coupled
than a system based on robot torque sensing [4]. Moving
the outer ring with respect to the inner ring allows humans
to give corrective feedback in all six degrees of freedom.



While holding on to the outer ring the humans also gets
passive haptic feedback about the state and movement of
the robot. Since this information is transmitted in a physical
3D environment close to the end-effector of the robot we
hypothesize that most humans will be able to intuitively use
the system as a teaching device in a dynamic and effective
way. We expect this device to be useful in a variety of
collaborative scenarios, for example in human-guided tool
transfer [5] [6], or in personalizing existing robot trajectories
for in-home robots (e.g., in cooking tasks).

The rest of the paper is structured as follows. In the
next section we will review some of the HRI literature to
identify desirable device requirements in relation to existing
work. We will then present our design goals for KRIS, and
describe its operation. We then evaluate our design by a series
of experiments with a group of 12 participants. Lastly we
discuss our findings, ending with a brief conclusion.

II. RELATED WORK

Most work relevant to this paper comes from approaches
and interfaces developed in the field of Learning from
demonstration (LfD) [7] [8]. To this end, this work builds
on insights from LfD to inform our decisions in creating
a system for teaching autonomous robotic motion. The core
distinguishing feature of this work is that it focuses on kines-
thetic corrective feedback rather than offline demonstrations.
To further inform our method, we first look at different
modalities used to provide robot demonstrations, and then
discuss methods used by the robot to interpret and integrate
different types of corrective feedback (which can be treated
as partial demonstrations).

A. Modalities of demonstrations

There broadly are three common categories for providing
demonstrations to robots [8]. With passive observation, the
robot passively observes an expert performing the task and
attempts to imitate it through imitation learning methods.
With tele-operation, demonstrations are given by means
of a remote device like a keyboard or joystick. Finally,
with kinesthetic teaching, the robot is physically moved to
provide a demonstration. Passive observations are generally
not applicable for our use case since they require actions to
be performed sequentially rather then concurrently. However,
the modalities of tele-operation and kinesthetic teaching are
suitable for use with corrective feedback.

On the one hand, the effectiveness of tele-operation relies
heavily on the type of input device used [9]. In the past people
have used keyboards [10], joysticks [11], haptic interfaces
[12], virtual or mixed reality interfaces [13] [14], etc. A
common trait that these methods usually share is that they
have low noise or bias. Where tele-operated demonstrations
typically struggle is in the area of intuitiveness and ease-of-
use. The user has to learn a mapping between their input and
the device output, and have to train to effectively control a
moving robot at a distance.

On the other hand, being able to quickly learn the mapping
between user input and the resulting demonstration is where

kinesthetic teaching excels. Prior research has shown that
kinesthetic teaching can be performed by non-experts with
minimal training [15] [16]. This is because this method
requires direct manipulation of the robot’s body, bypassing
the need for learning a mapping from device controls to
robot actions. A major downside of kinesthetic teaching is
that it requires specialized hardware to be able to use it as
corrective feedback. Most robot systems do not have precise
internal sensors measuring the force applied to their joints.
Another downside of traditional kinesthetic teaching is that
manipulating a robot can be difficult, specially for large
robots, or when demonstrations are trajectory-based rather
than keyframe-based [15].

B. Incorporating demonstrations into learning

Once a demonstration has been obtained through some
method of capture, the robot needs to process it in such
a manner that it will learn the correct behavior. Learning
low-level motion from human demonstrations or corrections
is most commonly approached through a Reinforcement
Learning (RL) formalism, whereby the robot learns a policy
mapping a state space to a robot action space.

There are various algorithms aimed at achieving this goal.
One such algorithm is COACH (COrrective Advice Commu-
nicated by Humans) [17]. COACH was initially conceived
as a general learning algorithm but has later been expanded
on to be applicable to robotic applications [18]. It works
by incorporating a supervised learner module that supports
the action selection. This supervised learner observes the
state of the agent and its environment. It also takes in an
advice signal from the human during the previous performed
action. With this information the supervised learner produces
a weight update from which the current policy is updated.
This framework is then extended with the inclusion of a
credit assigner module [19] and a human feedback modeler.
Some agents can perform actions at such a high frequency
that humans cannot adjust certain behaviors at the timescale
required. The credit assigner module attempts to resolve this
by associating the feedback not to a single action by the agent
but rather to a window of previous actions.

The COACH algorithm has been extended by including
a deep neural net to allow for larger input spaces [20].
This deep learning framework has later been enhanced to
greatly decrease the time that is required to train an agent.
It has also been adapted to include a forward dynamics
model which makes it feasible to use in robotics applications.
However, these additions of the COACH algorithm still use
the credit assigner and the human feedback modeler that was
introduced in the original COACH algorithm. We believe
that we can largely eliminate the need for these modules
by accounting for them in the design of our teaching device.

A device that has an analog output in all six degrees of
freedom would eliminate some of the need for a human
feedback modeler. The analog input could simply be directly
related to the optimal policy. A device where the human
moves concurrently with a robot could largely eliminate any



lag between the robots actions and the human’s corrections
and would eliminate the need for a credit assigner.

III. KRIS DESIGN

In this section we first lay out our goals for the design of
KRIS, then explain the working principle behind it.

A. Goals in designing KRIS

The design of KRIS took into account the following
considerations. We first wanted a system that could provide
analog corrective feedback to the robot in all six degrees of
freedom (linear and rotational). We also wanted a just-right
level of decoupling between the movement of the robot and
the human. This would provide both some haptic pressure
feedback to the human as to the direction of the robot’s
motion. Moreover, we wanted the system to be able to be
mounted near the end-effector of the robot as to provide
more precise feedback in the area of interest. And lastly
we wanted the design to be adaptable to multiple articulated
robot systems. With these requirement in mind we developed
KRIS as described below.

Fig. 1: Prototype of KRIS (Kinesthetic Robotic Interaction
System).

B. Working principle

As shown in Fig. 1, the hardware of KRIS consists of
two main sub-assemblies, the outer ring and the inner ring.
The outer ring functions as a tactile interface for the human.
It is suspended around the inner ring using an array of
springs. This enables the outer ring to have a full six degrees
of freedom whilst only being softly constrained. The inner
ring functions as a reference point to the robot. It is rigidly
attached to an extremity of the robot whose position is known
through forward kinematics. Applying a force to the outer
ring will change the relative position and rotation of the rings.
The device is able to measure this discrepancy in position
and rotation and use it as the user’s indication of where
they want the robot to move towards. Having an array of
springs fundamentally alters the way of interacting with the
robot compared to other solutions. It acts as a bi-directional

interface for movement information. As the robot is moving
the human is able to accurately feel how the rotation and
translation of the robot is changing. They can then precisely
intervene when it is required. On the side of the robot, the
latter has access to continuous and real-time path correction
information. Given Hook’s law of spring constants, pushing
with more force on the outer ring allows the user to specify
by how much they would like to change the path of the robot.
Lastly this method does not require any latency adjustment
like other existing methods. In the case that the robot makes
a sudden, unexpected and undesired movement the human
will by simply holding on tight to the outer ring which will
instantly send the right corrective feedback to the robot.

Some of the advantages over kinesthetic corrective feed-
back methods [4] [21] are that KRIS made of relatively cheap
and off-the-shelf component. KRIS can be mounted on any
existing articulated robot appendage as well as be integrated
in new ones. KRIS also allows feedback to be given in any
direction and any rotation at all times. This is sometimes not
possible in kinesthetic methods due to issues like gimbal lock
or other geometrical constraints.

C. Electromechanical design

For our prototype we have constructed the outer ring from
two plastic 3D printed parts, namely a top and a bottom
piece. It is clamped together using a set of nuts and bolts.
Between the top and bottom piece three magnets are placed.
These magnets are used as markers for specific points on the
outer ring. The inner ring features three corresponding 3-axis
magnetic sensors. These sensors measure the local magnetic
field strength. Using this sensor information we get a 3D
vector from the position of the sensor in the direction of
the nearest magnet. The sensor information is then digitized
and sent using the I2C protocol to a microcontroller. The
microcontroller then sends this information wirelessly using
UDP packets to an edge computer from which the robot’s
current trajectory is updated. The flow of information in the
system is detailed in Fig. 2.

For our sensors we have chosen the MLX90393 sensor
and a Adafruit breakout board. We specifically chose the
MLX90393 for its very high dynamic range. Three-axis
magnetic sensors tend to be very sensitive, which makes them
pick up other magnetic radiation like the earth magnetic field
and the magnetic induction of the robots actuators. This is
additionally why we have relatively big magnets on the outer
ring. We initially experimented with having smaller magnets
in the hopes that the magnetic field would be pointing to-
wards a smaller area but we achieved a better signal-to-noise
ratio and improved accuracy by using bigger magnets. For
the microcontroller we used the Adafruit Feather HUZZAH
ESP8266 for the convenience of integrating a battery and
wireless communication.

A repository including 3D models and an assembly
guide for KRIS is made open-source and available at:
https://github.com/kobotics/KRIS.

https://github.com/kobotics/KRIS


Fig. 2: System diagram of KRIS indicating the flow of
information throughout the system. The bold text indicates
the different electronic elements of the system and the non-
bold caption indicates our specific choice for this prototype.

D. Transformation solver

The task of the transformation solver is to uncover the
translation and rotation of the outer ring with respect to the
inner ring. It does this by taking the measurements from
each of the magnetic sensors (in the form of 3D vectors)
and applying a series of mathematical operations to recover
the homogeneous transform of the outer ring with respect to
the inner ring. In order to do this efficiently we make use of
three assumptions. (1) The magnetic flux radiates out radially
from the magnet. Magnetic flux around a magnet in reality
bends and warps all around the magnet, but since our sensors
are placed relatively close to the magnet we can ignore this
effect; (2) all magnets produce the exact same magnetic field
strength; and (3) all sensors are identical. In reality there
can be variations in how much some magnets are charged
compared to others. This could cause aberrations in how the
position of a magnet is measured. This position measurement
could also be affected by differences in the individual magnet
sensors. Different sensors could have different biases or
different temperatures which could cause them to produce
different values. In testing however, we found that these
effects were small enough to be safely ignored.

Converting sensor readings into a six-dimensional correc-
tive feedback vector involves the six following steps:

1) Expressing sensor readings in a common reference
frame

2) Finding the mapping from sensor values to distance
values

3) Calculating the positions of magnets from sensor read-
ings through solving a constrained set of linear equa-
tions

4) Finding the transformation of the outer ring through
the Kabsch algorithm [22]

5) Applying a soft maximum and minimum to avoid jerky
motions at extremes

6) Applying a dead-zone to reduce sensitivity to noise due
to external factors (see Section IV-A).

The last two steps were added as a result of pilot testing
and user feedback.

IV. EVALUATION

In order to evaluate the applicability of KRIS to kinesthetic
teaching of robot motion, we selected four key success
metrics to determine whether or not our design will be
able to provide high quality corrective feedback. These are:
(1) usability (during operation of the robot), (2) intuitiveness,
(3) accuracy of corrective feedback, and (4) task load.

For each of our experiments we will detail how the
experiment will impact these key success metrics.

A. Functional experiments

To test how well KRIS records the physical transformation
of the outer ring we applied translations of the outer ring with
various amounts and compared the transformation measured
by KRIS with a measurement made with a pair of calipers,
using the predicted magnet positions given by the transforma-
tion solver. This way we can witness individual aberrations
between the sensors if they occur. Setup and results for linear
axes are shown in Figs. 3 and 4. Tests on rotational axes are
left out due to space constraints, but did not show major
unexpected results.

Fig. 3: X- axis accuracy setup and measurement

Fig. 4: Y- axis accuracy setup and measurement

From this test we see satisfactory performance in the X-
axis direction. We do see the disparity between the caliper
and measured distance increase above the 1cm range, how-
ever within this range the disparity is quite minimal and
consistent. The Y-axis shows a bigger disparity between the
calipers and the measured values, particularly in sensor 1,
which was the sensor in-line with the translated axis. The
measured values were still monotonically consistent with the
calipers but show some nonlinearities. Since we average out
the signals across the three sensors when computing the final
homogeneous transformation, the signal is still usable but not
as accurate as for the X-axis. The problem is likely that the
sensors have a harder time determining the magnitude of the



magnetic flux in comparison to direction. Possible solutions
might be to change the layout of the magnetic sensors, or
linearize the signal in a preprocessing step.

We also tested for potential outside influence related to
factors such as the earth magnetic field, magnetic interference
from the robot’s actuators, oscillations, gravity, etc. through
moving the robot to a pre-defined set of diverse positions
over 10 trials. The average translation and rotation errors
due to external factors was observed to be negligible (linear
variation of a couple of tenths of a millimeter and rotational
variation of +/- 0.02 radians), except for a significant aber-
ration in the X-axis translation (up to 1.5mm). This is most
likely due to the effects of the device’s own weight when
aligned with the horizontal plane.

B. User study

We conducted a user study with 12 participants (6 male and
6 female) in which we mounted KRIS on the arm of a NAO
robot (see Fig. 5). After giving written informed consent,
each participant was first given one minute to get familiar
with the kinematics of the robot. This was done by allowing
them to freely move the robot arm by hand. After this, the
functionality of KRIS as well as the baseline was verbally
explained. The participants were exposed to two conditions:
KRIS and keyboard, each including one minute of familiariza-
tion. In the keyboard condition, each degree of freedom was
mapped to a different key (4 arrows, right Shift, slash, ‘q’,
‘w’, ‘e’, ‘a’, ‘s’, ‘d’). In one of the two experiments, we also
included a direct manipulation condition (see Section IV-B1).
To factor out order effects, the order in which the conditions
were presented was counterbalanced across participants. The
study participants were then asked to participate in the Pose
Mimic experiment explained in section IV-B1, then the Stop
experiment explained in section IV-B2. Lastly the participants
were asked to fill out a questionnaire (section IV-B3).

Fig. 5: User study setup. The left NAO is used to indicate the
target pose in the Pose Mimic experiment, the middle NAO
is used as baseline with the keyboard and the right NAO is
mounted with KRIS.

1) Pose Mimic experiment: In the Pose Mimic experiment
we took two static poses that were portrayed by a separate
NAO robot. The task for our participants was to match
the poses by using KRIS, and by using a keyboard. There
was a time limit of 45 seconds imposed on this task. We
first allowed the users to physically manipulate the robot
(touch input) to determine what an ideal path from the base

(a) Starting pose (b) pose 1 (c) pose 2

Fig. 6: Mimic experiment poses

Fig. 7: Time of completion for both poses with both methods

position to the pose would look like according to the user.
We chose to use a keyboard for our baseline to maximize
the distinction in having a tactile based kinesthetic input
method for KRIS as opposed to a more physically disjointed
experience input method with the keyboard. During the
experiment we recorded data about the path that the user
makes with the robot arm, the inputs of KRIS, as well as the
keyboard. This experiment is meant to test how well a user is
able to direct the robot in the direction that they desire. For
this experiment this is done without the robot moving in order
to eliminate robot motion as a confounding variable. Figure
7 shows the time to completion of both poses. A short video
snippet showing the KRIS condition in action is available at
shorturl.at/lGTU8.

We observe that most users are able to complete the task
faster with KRIS compared to the baseline. In total 15/24
trials were faster with KRIS with 3/24 being faster for the
baseline and 6/24 being equal. A paired two sample t-test was
performed to compare the completion time using KRIS and
the keyboard. There was a statistically significant difference
in completion time between KRIS (M = 23.9, SD = 15.9)
and the keyboard (M = 36.7, SD = 10.8); t(df) = −3.93;
p < 0.001). This indicates that KRIS performs statistically
significantly better on the metric of completion time.

2) Stop experiment: The Stop experiment is aimed at
investigating whether the user is able to give correct inputs
to KRIS while the robot is moving. To this end, we let the
robot move along a predefined path. Inputs given by the user
in the direction of the path would make the robot speed up
in. Conversely, inputs counter to the direction of the path
would make the robot slow down. The task for the user was
to slow down the robot as much as possible until ideally a
complete stop. The slowdown was achieved by increasing the

https://www.shorturl.at/lGTU8


Fig. 8: Scores of SUS and TLX section of questionaire.

interval time for the robot to reach the next position in its
path. Users started out with an interval time of 0.02 seconds
between path sections. If the user was able to slow the robot
down to an interval time of 0.05 seconds the run would be
considered successful.

The baseline generally outperformed KRIS in this instance
with 8/12 successful runs for the baseline and just 3/12
successful runs for KRIS. However, while looking through
the data we noticed that KRIS was in all cases able to
significantly slow down the arm. However, the users struggled
to find the correct direction to give feedback in while KRIS
was moving slowly. If we for example take an interval time
of 0.04 seconds, we notice that for 9/12 runs were successful
and for KRIS 10/12 runs were successful. This indicates that
if the arbitrary cutoff point was set to 0.04, KRIS would have
narrowly outperformed the baseline.

In the future we would like to test KRIS on more mean-
ingful tasks in combination with more complex plan update
methods on the robot, potentially involving learning. We
expect KRIS to be more usable in such contexts, especially
in tasks with some level of tolerance on the optimality of the
final policy.

3) Questionnaire: The questionnaire included two stan-
dardized scales to measure usability and cognitive load
respectively, namely the the System Usability Scale (SUS)
[23], and the Task Load Index (TLX) [24]. Results across
both conditions are displayed in Fig. 8. A higher SUS score
indicates the system is generally “more usable” and a higher
TLX score indicates the system generally requires “more
physical and cognitive load”.

A two sample t-test was performed to compare the SUS
scores and TLX scores for using KRIS and the keyboard.
There was a statistically significant difference in SUS scores
between the keyboard (M = 38.5, SD = 23.3) and KRIS
(M = 62.1, SD = 12.5); t(df) = −2.63, p = 0.011.
There was no statistically significant difference in TLX scores
between the keyboard (M = 52.9, SD = 14.7) and KRIS
(M = 46.7, SD = 11.4; t(df) = 1.68, p = 0.06.

V. DISCUSSION

In the area of usability, with the Stop experiment we
demonstrated that KRIS is able to be effectively used during
operation, and that it was deemed significantly more usable
than our keyboard baseline. One caveat is that for lower robot
speeds it became more difficult for the users to give the

correct feedback to the robot. This is likely due to one of
two factors: (1) the users found it difficult to judge how to
correct the robot if it is moving slowly, or (2) the force that
users exerted via the KRIS on the robot physically stopped
it from moving, inhibiting them to see what the correct
feedback would be. The former problem could be inhibited
by researching other methods of obtaining the user’s desired
policy. The latter problem could be solved by repeating the
same experiment with a more powerful robotic platform (e.g.,
cobot arm).

In the area of intuitiveness, the system was tested giving
participants minimal time to learn how to efficiently make use
of the KRIS-robot system. With the Pose Mimic experiment
we demonstrated that with this limited time users were
still largely able to effectively give inputs in their desired
direction. This shows that KRIS is generally more intuitive
than the keyboard baseline.

In the area of accuracy, with both of our functional ex-
periments we showed that the KRIS can accurately interpret
user input. Furthermore we showed with both the Pose Mimic
and stop experiments that the user is able to give precise
feedback.

Lastly, in the area of task load, we found no statistically
significant difference between KRIS and the baseline. This
might be due to a discrepancy between the familiar nature
/ unfamiliar application of the keyboard interface and the
unfamiliar nature / familiar application of the KRIS device.
We expect task load to decrease for KRIS with repeated use
of the device, and to stay stable for the keyboard condition
(to be tested in future work).

VI. CONCLUSION

This work presented KRIS, a novel design for a device that
enables end users to provide kinesthetic corrective feedback
to robots in all six degrees of freedom (linear and rotational),
during robot motion. Thanks to the spring system both the
human and the robot have a level of independent movement.
This also provides some haptic feedback to the human who
is therefore more able to give effective corrective feedback.
KRIS can be mounted on a large variety of articulated
robotic systems. We have shown that the device is usable
during operation of the robot, is intuitive, and offers precise
corrective feedback without requiring a higher mental load
than a keyboard baseline.

In future work, we would like to explore a more universal
device design that can be mounted and calibrated on robots
of varying sizes and shapes. We also would like to investigate
how this type of corrective feedback is best interpreted by
the robot as part of an interactive reinforcement learning
algorithm. We view this work as a first step towards richer
interfaces that empower human teachers by allowing them
to more actively and efficiently adapt robot behavior to suit
their needs in a variety of collaborative or assistive contexts.
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[20] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober, “In-
teractive learning with corrective feedback for policies based on deep
neural networks,” in Proceedings of the 2018 International Symposium

on Experimental Robotics (J. Xiao, T. Kröger, and O. Khatib, eds.),
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