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I. INTRODUCTION

Human-human interaction often starts with a form of so-
cial greeting: handshakes, fist-bumps, bows, hugs, etc. Social
greetings communicate deeply rooted social structures and
roles. Studies have shown that human-human greeting benefits
emotion sharing [1]–[4] and strengthens social connection
between individuals [5]. Despite fundamental differences in
the perception of humans versus robots [6], [7], some work
has shown that robot greeting produced more positive user
perceptions of robots and helped maintain social ties [8].
Therefore, we believe it is beneficial to equip robots with
advanced greeting skills for more effective initiation of situated
interactions.

Although humans engage in social greetings intuitively with
almost simultaneous observation and action [9], it remains
challenging for robots to master this embodied interaction
skill. Such human-centered interactive task requires spatial and
temporal coordination between agents in real-time, tackling
physical limitation from constrained robot bodies, and decod-
ing ambiguity in subjective evaluation for concrete learning
objective. Some rule-based methods [10], [11] hardcoded
interactive responses via empirical observation, but they can
hardly be robust enough for unseen situations and universal
for different social agents. Alternatively, data-driven methods
[12]–[15] trained the robot with demonstration data, aiming to
imitate the policy of human experts. However, these imitation-
based approaches mainly focused on improving the algorithm
itself and neglected the potential benefits if more careful
attention is paid to data collection and subjective evaluation
metrics. Specifically, our work aims to answer these two
questions: 1) how should demonstration data be collected
under limited resources so as to maximize learning perfor-
mance?, and 2) how to elicit objective factors that can help
interpret subjective evaluations of a learned policy and inform
algorithm improvement?

These are indeed non-trivial questions. Regarding the data
collection, the performance of imitation-based methods relies
heavily on the amount and quality of training data [16], [17].
Unfortunately, conditions often only afford limited amounts
of data (e.g., due to scarcity of resources in lab-based HRI
research). How to collect diverse yet representative demonstra-
tion data within dataset size constraints remains an open ques-
tion. Regarding evaluation metrics, it is a common practice to
evaluate robot performance using subjective metrics [18], [19]
in human-centered tasks like social greetings. However, just
knowing how satisfied the human partner feels hardly speaks
for how the robot could concretely improve its policy. It would
be more improvement-informative if more robot-centered fac-
tors that are objective and tuneable could be identified from
general subjective metrics. These factors would better support
refining learning algorithms to adapt to user experience and
predicting the subjective experience for early intervention.
Despite all these benefits, how to identify objective and robot-
centered factors from subjective metrics has not yet been fully
investigated.

Therefore, our approach (summarized in figure 1) con-
tributes a process study to, first, inform the collection of
demonstration data and, second, identify robot-centered factors
for imitation-based robot learning in social greeting tasks. Our
contributions can be summarized as follows:

• A guideline to collect diverse and representative demon-
stration data within amount limitation. We identified
representative behavioral dimensions of human greeting
behaviors (referred to as Human Behavioral Features or
HBFs) using a Wizard-of-Oz setup and a filter-based
unsupervised feature selection method. The outcome is
a semi-structured procedure to collect expert demonstra-
tions in instances that are considered diverse along the
previously validated dimensions.

• An experimental method to elicit objective robot-centric



Fig. 1. Overview of the approach taken in this paper.

factors from subjective evaluation to better inform im-
provement. We proposed and validated robot behavioral
factors (RBFs), i.e., tunable robot control variables that
influence high-level subjective evaluation metrics. These
factors are obtained via a Wizard-of-Oz method and are
helpful to explain subjective performance gap and inform
algorithm improvement.

• A demonstrative deployment of the aforementioned
process study in a real human-robot social greeting
scenario. With demonstration data collected following
our proposed guideline, we demonstrated its application
in a fist-bump greeting task trained with a typical imi-
tation learning algorithm (i.e., Behavioral Cloning). Per-
formance analysis followed to indicate potential benefits
of RBFs in explaining subjective performance results and
generating insights to potentially refine algorithm design
for better performance.

II. METHODOLOGY

A. Study 1: HBF-Informed Data Collection

1) Unstructured Data Collection: To identify the repre-
sentative HBFs, we collected diverse sample data on hu-
man behavior with unstructured data-collection experiments.
Each human subject conducted a fist-bump with the robot in
Ndiv (Ndiv > 1) different ways. In each trial, human subjects
played the role of “initiator” to initialize the fist-bump and
the robot responded to the greeting teleoperated by the same
expert human operator. Human subjects first implemented the
fist-bump with the robot in their most intuitive way. Then they
altered their ways of doing it in any aspect as long as they still
felt natural and comfortable. We refer to this data collection
process as “unstructured”, since we did not instruct humans
on how to change their greeting behaviors and they took full
charge of it.

2) Semi-Structured Data Collection: We applyed Feature
Selection techniques (i.e., Laplacian Score) to the data col-
lected above and selected the top Nrep (Nrep ≥ 1) from
candidate HBFs as the representative HBFs to instruct the
semi-structured data collection. Like in II-A1, human subjects
first conducted fist-bumps with the robot in their most intuitive

ways. Then we instructed them to vary their behaviors with
respect to each of the representative HBFs. We refer to this
way of data collection as “semi-structured”, since we did not
instruct humans how exactly they should alter their greeting
behavior to reproduce certain expected distribution (i.e., “fully
structured”). Alternatively, we only indicated the dimensions
along which they changed their greeting behaviors (i.e., “semi-
structured”).

B. Study 2: RBF-Informed Subjective Evaluation

We conducted NRBFs sections of experiments to identify
the RBFs that impacted human subjective evaluation of the
robot performance in the social greeting task. The amount of
sections corresponds to the total number of potential RBFs.
Each section consisted of two trials. The same expert human
operator controlled the “puppet” robot to do bump-fist with
human subjects twice in the same natural way. In one trial,
the “performer” robot followed the exact command from
the “puppet” robot (i.e., “normal mode”) while in the other
trial we hardcoded it to deliberately divert from the original
command (i.e., “diversion mode”) with regards to one specific
RBF. After two trials finished, we immediately asked human
subjects to evaluate the robot greeting in each trial with a
5-point Likert Scale, where 1 represents “very poor” and
5 represents “excellent”. A one-minute break followed for
fatigue concerns.

C. Study 3: Evaluation Study with Demonstrative Deployment
of Behavioral Cloning (BC)

We trained Behavior Cloning (BC) models respectively
with data sets from the II-A1 and II-A2. To train with an
equal amount of data, for each human subject we sampled
Ntrain(Ntrain = min(Ndiv, Nrep) trials of demonstration
data from both data sets, with 80% of them for training and
20% for validation.

With the trained BC models, we invited another 16 human
participants to evaluate robot performance in doing fist-bump.
The experiment included 3 sections and in each section
the robot was controlled by a different model (i.e. one of
the trained BC models, or Wizard-of-Oz). Human subjects
conducted fist-bump to the robot in their most intuitive ways



and scored robot performance via a 5-point Likert Scale where
1 represents “very poor” and 5 represents “excellent”. A 1-
minute break followed after each section. Our results indi-
cated that more structured data collection improved subjective
performance. Furthermore, such performance was correlated
to influential RBFs, which could be used to refine learning
algorithms.

III. CONCLUSION

In this work, we presented a process study of imitation-
based robot learning for social greeting task. It provided guid-
ance for collecting higher-quality demonstration data within
limited budget and bridged the gap between uninformative
subjective evaluation and concrete algorithm refinement. How-
ever, we only built our studies around the task of fist-bump
as one of the most typical greeting behaviors. In the future,
we also plan to apply the results from this work to a broader
range of cooperative task settings and further investigate the
potential of imitation learning algorithms in social interactive
scenarios.
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