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Abstract— Learning from Demonstrations (LfD) transfers
skills from human teachers to robots. However, data imbalance
in demonstrations can bias policies towards majority situations.
Previous work attempted to solve this problem after data
collection, but few efforts were made to maintain a balanced
distribution from the phase of data acquisition. Our method
accounts for the influence of robots on human teachers and
enables robots to actively guide interaction to approximate
demonstration distributions to target distributions. Simulated
and real-world experiments validated the method’s efficacy in
shaping demonstration distribution into various target distri-
butions and robustness to various levels of uncertainties. Also,
our method significantly improved the generalization ability
of robot learning when LfD policies were trained with data
collected by our method compared to natural data collection.

Index Terms— learning from demonstration, data imbalance,
data collection, human-robot interaction

I. INTRODUCTION

In recent years, Learning from Demonstration (LfD) has
become one of the most popular methods to equip robots
with various skills [1], [2]. Previous work explored different
avenues to provide demonstrations from human teachers
(e.g., kinesthetic teaching [3]) for various types of tasks.
However, the performance of such a data-driven method
is intrinsically influenced by the quality of demonstration
data. Among the challenges brought by data quality, data
imbalance is one of the most prominent issues. It can easily
result in a biased policy against minor situations when these
demonstrations are imbalanced [4], [5]. What is even worse
is that balanced demonstration data can hardly be naturally
obtained in real-world scenarios [6]. In real-world appli-
cations, robots are often confronted with highly dynamic
environments where it is infeasible to capture all possible
situations in data collection with equal abundance. In the case
of engagement recognition [7], [8], for example, disengaged
situations are less often to be naturally collected, leading to
an imbalanced dataset that is heavily biased towards high-

engagement classes. Such an imbalance will bias the learning
process and demand properly addressed for an unbiased
policy.

To tackle data imbalance, previous work mainly solved
it from the side of algorithm design, adding extra consid-
eration in the cost function to unbias policy learning [4],
[5], [8]. Some work [9]–[11] also alleviated the imbalance
issue by implementing different re-sampling methods (e.g.,
undersampling [12] and oversampling [13]) on the original
dataset. However, these efforts only attempted to curate the
existing datasets after they are already collected. Few of
them paid careful attention to data abundance during the data
acquisition process and put efforts to maintain a balanced
data distribution from the early phase. Instead of solving the
real bottleneck brought from the data side, as indicated in
[14], prior work tended to make the opposite efforts only
from the algorithm side. Therefore, our work aimed to solve
the data imbalance in the early phase of data acquisition and
attempted to answer the following research questions:

• Q1: How to actively shape the distribution of demon-
stration data to maintain data balance during the data
acquisition process?

• Q2: How does such active data collection benefit robot
learning performance?

To answer question Q1, we explicitly took into account the
influence of robots on human teacher behaviors and enabled
the robot to actively guide its interaction with humans to
shape the distribution of collected data. More specifically,
we formalized such an active data collection process into a
discrete finite-horizon Markov Decision Process (MDP) to
maintain data balance against uncertainties during the data
collection process. Results for the experiments of simulated
data collection verified our method’s generalization capabil-
ity to actively shape the resulting distribution into various
target distributions, along with its robustness to different



Fig. 1: Overview of our active data collection method. Given the latest demonstration from the human teacher, our method
enables the robot to actively provide guidance to teachers (e.g., base movement) for the next demonstration, aiming to shape
the distribution of collected demonstrations towards a given target distribution after all demonstrations are collected.

levels of uncertainties during the data collection process.
To answer question Q2, we applied our method to real-
world robot tasks (i.e., forward ball-throwing and backward
ball-throwing) and trained LfD models with demonstration
data that were actively gathered using our data collection
method. Results validated the efficacy of our method to better
maintain a more balanced distribution of demonstration data
and indicated that it could improve robot generalization
ability in unseen situations with a significant effect. For
real-world tasks, we selected uniform distribution as the
target distribution and showed that it benefited robot learning
performance. However, this may not always be the optimal
choice for target distributions to achieve improved learning
performance. How to select the best target distribution for
different tasks is out of the scope of this work.

To summarize, our work made contributions in the follow-
ing aspects:

1) We presented an MDP-based active data collection
method that could produce policies to actively shape
data distribution in the phase of data acquisition.

2) We demonstrated via simulations that our trained data
collection policies were of good generalization ability
to actively shape collected demonstrations into various
target distributions and of strong robustness to different
levels of uncertainties during the data collection process.

3) We verified our method’s efficacy in real-world tasks
and demonstrated improved robot learning performance
in unseen situations when models were trained with
demonstrations of more balanced distributions shaped
by our active data collection method.

II. RELATED WORK

A. Data Imbalance in Data-Driven Learning

Data imbalance is a common problem for data-driven
learning. It usually refers to the scenarios in classifica-
tion problems where the ratio of different labels is highly
uneven, leading to biased learning towards the majority
class [7]. Prior work provided various methods, including
data-centered methods and algorithm-centered methods [7],
[15], [16]. For data-centered ones, common practices in-
clude different kinds of sampling strategies such as under-

sampling [12] to decrease majority instances and over-
sampling [13] to increase minority examples. Some works
[17] also utilized feature selection techniques to solve the
imbalance problem. By contrast, algorithm-centered methods
attempted to solve the data imbalance by reconsidering the
design of the learning objective. For instance, thresholding-
based methods [18] solved the problem by adjusting the
threshold for the classifier to distinguish between majority
and minority classes. Cost-sensitive learning [19] reweighted
the misclassification cost for different classes to balance the
learning process. Some other methods also turned the multi-
class problem into a one-class learning process and took
the minorities as positive (or outlier) instances to overcome
the imbalance among different labels [20]. Recent work also
extended the scope from classification problems to regression
problems [6]. However, all these methods attempted to solve
the data imbalance after training data are already collected
and seldomly tried to tackle it right from the data acquisition
process. By contrast, our work actively monitors and shapes
the distribution of training data during the data collection
process to better benefit learning performance.

B. Data Collection for Learning from Demonstration

Previous works in LfD have utilized various avenues to
collect demonstration data. In general, three categories of ap-
proaches are commonly employed [21]: kinesthetic teaching,
teleoperation, and passive observation. Kinesthetic teaching
[3] refers to the method where human teachers physically
guide robots to demonstrate desired motions. It has been
widely used especially for manipulation tasks to provide
demonstrations in a more intuitive manner. Teleoperation
[22] refers to the method where human teachers provide
demonstrations via remote controlling (e.g., joysticks). In
these cases, demonstrators do not have to be spatially present
with the robot at the same time, much benefiting large-
scale demonstration collection [21]. Passive observation [23]
refers to the method where human teachers demonstrate how
they complete the tasks without robots being involved in the
execution process. Such a method makes it much easier for
human teachers to provide demonstrations, but requires extra
efforts in data curation and solving correspondence problems.



Combined with these three demonstration approaches, more
advanced interfaces, either from the side of hardware [24] or
software [25], can even further facilitate the human teaching
experience and improve the quality of demonstration data.
However, these previous works tend to place the robot in
a passive position to receive demonstrations from human
teachers and seldomly took the distribution of demonstration
data into account. Furthermore, they barely explicitly inves-
tigated the potential benefits it might further bring for robot
learning if proper guidance can be actively provided from
robots to human teachers in the data acquisition process.

III. METHODOLOGY

The distribution of demonstration data tends to be imbal-
anced if they are naturally collected. Therefore, our method
aims to solve the data imbalance issue in the phase of
the data acquisition process. By modeling and utilizing the
influence of robots on human teacher behaviors, our method
produces a data collection policy for the robot to actively
guide its interaction with humans, aiming to shape the
distribution of collected demonstration data into any given
target distribution as closely as possible.

A. Concepts
1) Demonstration Data: For a given task, we defined

demonstration data Γ = {ξD1 , ξD2 , . . . , ξDND
}, which includes

ND trajectories ξDi . Each demonstration trajectory ξDi =
{(sDt , aDt )}Lt=1 is a finite-horizon sequence of state-action
pairs, where sDt and aDt are the state and action for the given
task at step t, and L is the horizon length of the trajectory.

2) Feature Function: Given a high-dimensional trajectory
ξ, we defined the low-dimensional feature variable ϕ = Φ(ξ),
where Φ(·) is a predefined trajectory-based feature function.
For example, in the task of robot ball-throwing, the feature
function can be the distance between the landing position
of the ball and its initial position given the robot’s throwing
movements. To simplify the problem, in this work we made
several assumptions about feature function design:
• We assume that the feature variable ϕ is representative

and interpretable. By representative, we mean that the
selected feature is able to capture one important aspect
of task dynamics and its distribution will closely impact
that of demonstration data Γ. By interpretable, we mean
that such a variable should have practical meaning (e.g.,
landing distance in the ball-throwing task) as opposed to
some unexplainable latent variable.

• Without loss of generality, we only consider the case where
ϕ is a one-dimensional continuous variable (i.e., ϕ ∈ R)
and present a data collection method to actively shape
the univariate distribution of demonstration data Γ along
this feature dimension. However, the formulation of our
method can be easily scaled to multi-dimensional cases.

B. Active Collection for Demonstration Data
Aiming to actively shape the distribution of demonstration

data into any given target distribution, we formalized the task
of active demonstration collection as a discrete-time Markov
Decision Process (MDP) with a finite horizon.

1) States: We defined the state st ∈ S as the discrete
distribution result Dt for normalized feature values ϕ̃ of
already collected demonstrations (i.e., {ξD1 , ξD2 , . . . , ξDt−1})
before step t starts. Each normalized feature value ϕ̃ was
obtained by normalizing over the interval bin length lbin,
i.e., ϕ̃ = ϕ / lbin. More specifically,

st = Dt =
{
n1
t , n

2
t , . . . , n

Nintv
t

}
(1)

where ni
t represents the number of already collected demon-

strations before step t whose feature values fall into the range
of the i-th interval. Nintv refers to the number of predefined
intervals with which to characterize the resulting discrete
distribution.

2) Actions: We defined the action at as the it-th prede-
fined interval, which corresponds to the target range of the
expected normalized feature value ϕ̃ for the next demonstra-
tion ξDt the robot aims to collect. Once the target interval is
chosen, the robot will take corresponding low-level actions
(e.g., verbal communication, base movement) to guide its
interaction with human teachers, indicating its intention
and consequently influencing human behaviors to increase
the likelihood of obtaining the next target demonstration.
Mathematically, the high-level action at can be expressed
as:

at = it ∈ {it | it ∈ N, 1 ≤ it ≤ Nintv} (2)

3) Transition model: After the robot observes the discrete
distribution result (i.e., st) of collected demonstration data
and selects the interval (i.e., at) for the normalized feature
value of the next target data demonstration, st will transit to
st+1 by:

st+1 ∼ P (st+1 | st, at)
= P

(
i realt

∣∣ st = Dt, at = it
)

=
P
(
i realt

∣∣ at = it
)

Nintv∑
j=1

P
(
i realt = j

∣∣ at = it
) (3)

where i realt represents the interval within the range of
which the normalized feature value of the new demonstration
actually falls. P

(
i realt | at = it

)
was defined as:

P
(
i realt = k

∣∣ at = it
)

=

∫ rk

lk

N
(
ϕ̃t

∣∣∣∣ lit + rit
2

, σ2
d

)
dϕ̃t (4)

where we assumed the probability of the normalized feature
value ϕ̃t of the actually collected demonstration ξDt follows
a Gaussian distribution centered in the middle of the it-th
interval with a predefined constant standard deviation σd. For
convenience, we refer to σd as transition standard deviation
thereafter. lk and rk represent the left and right boundary of
the k-th interval. Similarly, lit and rit represent the left and
right boundary of the it-th interval.



4) Reward: We defined the reward function r(st) as:

r(st) =



Nintv∑
i=1

min
(
0, ni

targ − ni
t

)
, if t < T

Nintv∑
i=1

−
∣∣ni

targ − ni
t

∣∣ , otherwise.

(5)

where ni
targ ∈ Dtarg represents the target number of

demonstrations whose normalized feature values fall within
the range of i-th interval given a target discrete distribution
Dtarg for the whole demonstration dataset. T refers to the
horizon length of one complete episode (i.e., the total number
of demonstrations to be collected).

5) Policy: Given the reward function r(st) and transition
model P (st+1 | st, at), the goal is to obtain the optimal
policy π∗ that is able to achieve the maximum finite-horizon
discounted reward.

IV. EXPERIMENTS

To prove the efficacy of our method in shaping demonstra-
tion distribution and investigate its benefits for robot learning,
we conducted experiments for both simulated and real-world
data collection.

A. Experiments of Simulated Data Collection

1) Task Settings:
To simulate the data collection process, we generated a

synthetic dataset Γϕ
syn of 40 feature values ϕi, i.e., Γϕ

syn =
{ϕi |ϕi ∈ R, 0 ≤ ϕi ≤ 10}40i=1, whose distribution was
discretized with 10 intervals of bin length 1. We used such
a dataset as a pool of potential demonstrations available for
collecting. We assumed the process of active data collection
followed the transition dynamics we defined in (3).

2) Baselines:
Two methods were used to subsample from Γϕ

syn: natural
data collection and active data collection. For natural data
collection, we randomly subsampled from Γϕ

syn to simulate
the natural data collection process. For our active data
collection, we used pre-trained policies π∗ for different
target distributions to subsample from Γϕ

syn. Given a target
distribution, we set σd = 0.5 and obtained π∗ via Proximal
Policy Optimization (PPO) with a mini-batch size of 64, a
learning rate η of 3 × 10−4, a discount factor γ of 1, and
trained for 4× 103 episodes.

3) Procedures:
We conducted experiments for three different target dis-

tributions (i.e., uniform distribution, normal distribution, and
bi-modal normal distribution). For each of them, we con-
ducted 30 independent trials of simulated data collection
using two baselines. In each trial, we used each method
to subsample 20 datapoints from Γϕ

syn. We compared data
collection performance using distribution deviation defined
as:

edev =
1

2T

Nintv∑
i=1

∣∣ni
targ − ni

T

∣∣ (6)

where ni
T refers to the number of collected data points in

the i-th interval after the whole episode of data collection
completes (i.e., finishing the final step T ).

To investigate our method’s robustness to different levels
of uncertainty, we also conducted experiments for sensitivity
analysis to investigate the effects of transition standard
deviation σd defined in (4) on the resultant data collection
performance. After training policies π∗ with different σd for
the three target distributions, we conducted 30 independent
trials of simulated data collection. In each trial, we used each
of these policies to subsample 20 datapoints from Γϕ

syn, and
compared the data collection performance using disbribution
deviation edev .

B. Experiments of Real-World Data Collection

1) Task Settings:
We designed two real-world tasks: forward ball-throwing

and backward ball-throwing, as shown in Fig. 2. In these
tasks, human teachers will kinesthetically teach the robot
how to throw a ball towards given target areas that are either
in front of it (i.e., forward ball-throwing) or behind it (i.e.,
backward ball-throwing). Given these demonstrations, the
robot aims to learn a low-level control policy to throw the
ball onto any given target area as closely as possible.

We used Behavioural Cloning (BC) [26] for con-
trol policies. For both tasks, we defined the low-level
state sDt and action aDt as (xrh

t , yrht , zrht , xtarg) and
(qrspt , qrsrt , qreyt , qrert , qrwy

t ) respectively. xrh
t , yrht , and zrht

are the 3D position of the robot’s right hand in the robot base
frame shown in Fig. 2. xtarg is the absolute distance between
the given target area and the robot standing position along
the x-axis. qrspt , qrsrt , qreyt , qrert , and qrwy

t are the target joint
values of the robot’s right shoulder pitch, right shoulder roll,
right elbow yaw, right elbow roll, and right wrist yaw. We
set the episode length L as 30, i.e., ξDi = {(sDt , aDt )}30t=1.

For the high-level data collection tasks, we chose the
feature function Φ(·) as the absolute distance between the
landing position and the robot’s standing position along the
x-axis. The real-time distribution Dt was discretized with 6
intervals of bin length 0.2m. We labeled on the floor a valid
landing area to limit ϕ to the range of [0.3m, 1.5m].

2) Baselines:
We employed two different methods to collect demonstra-

tions: natural data collection and active data collection. For
natural data collection, the robot stayed at a fixed position
and human subjects physically guided the robot’s right arm
to provide demonstrations to throw the ball into the valid
landing area (shown in Fig. 2).

For our active data collection, the robot actively moved
its base back or forth relative to a fixed target landing area
(shown in Fig. 2) after each demonstration was provided
by human subjects who physically guided the robot arm to
throw the ball aiming at the target landing area. The robot
moving distances corresponded to at and were determined
by the policy π∗ trained as that in section IV-A, with uniform
distribution as the target distribution and σd = 0.5.



Fig. 2: Hardware and task settings for real-world experiments.

3) Hardware:
We used the humanoid robot Pepper of the SoftBank

Robotics company for experiments. The ball was with a
diameter of 5 cm, a weight of 270g, and covered with hook-
and-loop fasteners (shown in Fig. 2) to easily attach itself
to the fabric floor against further slipping once landing.
We manually measured the ball landing distance after each
demonstration finished.

4) Participants:
Following the ethical guidelines provided by our faculty’s

research ethics board, we recruited 17 human subjects (9
male, 7 female, 1 other gender) from campus via poster
advertisement. The ages of participants were distributed as
follows: 13 between 18-29, 3 between 30-39, and 1 between
40-49. Coding experience was categorized as none (2), some
(4), and extensive (11). The ball-throwing experience was
categorized as none (1), some (13), and extensive (3). Expe-
rience in movement activities was categorized as none (2),
some (11), and extensive (4). Participants were compensated
with a C10 digital gift card after the experiments finished.

5) Procedures:
We conducted within-subject experiments of data collec-

tion for the two ball-throwing tasks. Under each condition
of the data collection methods, human subjects provided
12 demonstrations for each task, resulting in two sets of
demonstrations Γk

nat and Γk
act for human subject k. The con-

Fig. 3: Results for average distribution deviation in simulated
data collection processes.

dition order was counter-balanced. Before the experiments
of active data collection, we informed human participants
of the potential movements of the robot base after each of
their demonstrations was provided, aiming to alleviate the
impact of unexpected surprise on human demonstrations.
Prior to providing demonstrations for each task for the
first time, human subjects went through a training session
to get familiar with physically controlling the robot. It
finished once they succeeded to throw the ball into the valid
landing area successively for 3 times, or it reached the time
limit of 5 minutes. To evaluate data collection performance,
we respectively calculated the distribution deviation edev
for the two datasets (i.e., Γk

nat and Γk
act) of each human

subject. All demonstrations and video footage are available
at https://github.com/MH-Hou/active-data-collection.git.

After the experiments under the first condition finished,
human subjects filled out a questionnaire to evaluate the
importance of the diversity of landing distances in demon-
stration data for robots to master ball-throwing. The scores
were given via a 5-point Likert Scale where 1 represents “not
important at all” and 5 represents “extremely important”. To
avoid bias, we also asked about the importance of the robot
arm average velocity and robot hand final stopping position
and randomly set the question order.

For each ball-throwing task, we trained two BC models
with demonstrations collected respectively using two base-
line methods. Each BC model consisted of a 4-dimensional
input layer, two fully connected layers with 64 units each,
and a 4-dimensional output layer. We used Mean Square
Error (MSE) as the loss function and trained the BC model
for 300 epochs with a learning rate of 0.001 and a mini-batch
size of 64.

We tested the performance of trained BC models on two
sets of distinct target areas, whose distances to the fixed
robot position were uniformly distributed across the range of
[0.3m, 2.0m] and [1.55m, 2.0m]. The first set consisted of 18
areas and was used to evaluate the overall performance. The
second one consisted of 19 areas and was used to evaluate
the generalization ability of BC models in completely unseen
situations. We evaluated the model performance with landing
error edist defined as |xtarg −xreal|, where xreal is the real
landing distance from the robot position along the x-axis.



(a) uniform target distribution (b) normal target distribution (c) bi-modal normal target distribution

Fig. 4: Distribution plots for simulated data collection in one random trial using various types of target distributions.

V. RESULTS

A. Simulated Data Collection

1) Results for approximating various types of target dis-
tributions:

For the experiments of each target distribution, we con-
ducted a paired samples t-test to determine the effect of
the type of data collection methods on distribution devia-
tion edev , the results of which are shown in Fig. 3. With
uniform distribution as the target distribution, there was a
significant difference in edev between natural data collection
(M = 0.345, SD = 0.061) and active data collection
(M = 0.085, SD = 0.042); t(19) = 14.75, p < .001
with a large effect size (Cohen’s d = 4.83). With the
normal distribution as the target distribution, there was also a
significant difference in edev between natural data collection
(M = 0.625, SD = 0.126) and active data collection (M =
0.0875, SD = 0.052); t(19) = 17.24, p < .001 with a large
effect size (Cohen’s d = 5.43). With the bi-modal normal
distribution as the target distribution, we also observed a
significant difference in edev between natural data collection
(M = 0.452, SD = 0.064) and active data collection
(M = 0.1075, SD = 0.064); t(19) = 15.06, p < .001 with
a large effect size (Cohen’s d = 5.25). We also visualized
the distribution result of a randomly selected trial during the
experiment, shown in Fig. 4. Consistent with the results of
t-tests, our active data collection method yielded a dataset
of normalized feature values that more closely approximated

Fig. 5: Results for sensitivity analysis under various transi-
tion uncertainties in simulated data collection processes.

various target distributions, in contrast to that collected by
the natural data collection method.

2) Results for sensitivity analysis:
As shown in Fig. 5, with various target distributions,

the average distribution deviation all tended to increase
as the transition standard deviation became larger. More
specifically, such an increase remained relatively minimal
when the transition standard deviation σd stepped from 0.1 to
0.2, where the average distribution deviation was quite close
to 0. However, the average distribution deviation surged to
much higher values when σd increased beyond 0.5, arriving
at around 0.08. When σd increased to around 1.0, the
average distribution deviation also reached its highest value
of around 0.2 for each type of target distributions. Never-
theless, compared with the average distribution deviations of
natural data collection shown in Fig. 3, active data collection
still achieved much smaller average distribution deviations,
even when σd arrived at 1.0 under each condition of target
distributions.

B. Real-World Data Collection

1) Results for Balancing Data Distribution:
For both ball-throwing tasks, we performed a paired

samples t-test to determine the effect of the type of data
collection methods on distribution deviation edev , the results
of which are shown in Fig. 6a. For the task of forward
ball-throwing, we observed a significant difference in dis-
tribution deviation between natural data collection (M =
0.520, SD = 0.116) and active data collection (M =
0.186, SD = 0.120); t(16) = 10.43, p < .001 with
a large effect size (Cohen’s d = 2.74). For the task of
backward ball-throwing, there was also a significant differ-
ence in distribution deviation between natural data collection
(M = 0.466, SD = 0.115) and active data collection
(M = 0.216, SD = 0.131); t(16) = 5.46, p < .001 with
a large effect size (Cohen’s d = 1.97). We also visualized
the distributions for feature values (i.e., landing distance)
of all demonstrations collected respectively by active data
collection method and natural data collection method, shown
in Fig. 6c and Fig. 6d. Consistent with the results of the t-
test, feature values of demonstrations collected by our active
data collection method more closely approximated the target
uniform distribution, resulting in a more balanced set of



(a) Results for real-world average distribution deviation (b) Results for average landing error during testing.

(c) Distribution plot for forward ball-throw (d) Distribution plot for backward ball-throw

Fig. 6: Results for experiments of real-world data collection. (b) reveals the testing performance of BC models that were
trained with various data collection methods on completely unseen situations. (c) and (d) visualize the distribution of
demonstrations from all human subjects.

demonstration data as compared to the natural data collection
method.

Regarding the results of the questionnaire, we selected
16 out of 17 questionnaires (8 for natural data collection
and 8 for active data collection). We conducted an inde-
pendent samples t-test to investigate the influence of the
effect of the type of data collection methods on human
subjective evaluation of the importance of the diversity in
landing distance. We observed a significant difference in
subjective importance scores between natural data collection
(M = 2.875, SD = 1.269) and active data collection
(M = 4.125, SD = 0.781); t(14) = −2.220, p < .05 with
a large effect size (Cohen’s d = 1.11).

2) Results for Robot Learning Performance:
For each ball-throwing task, we performed a paired sam-

ples t-test to determine the effect of the type of data
collection methods on landing error edist when testing in
completely unseen situations. The results of these analyses
are shown in Fig. 6b. For the task of forward ball-throwing,
there was a significant difference in landing error between
natural data collection (M = 0.319m,SD = 0.169m)
and active data collection (M = 0.216m,SD = 0.103m);
t(18) = 3.127, p < .05 with a medium effect size
(Cohen’s d = 0.72). For the task of backward ball-throwing,
we also observed a significant difference in landing error
between natural data collection (M = 1.131m,SD =

0.145m) and active data collection (M = 0.778m,SD =
0.111m); t(18) = 24.36, p < .001 with a large effect size
(Cohen’s d = 2.65).

Similarly, we also conducted a paired samples t-test to
investigate the effect of the type of data collection methods
on landing error edist when testing on target areas rang-
ing between [0.3m, 2.0m]. For the task of forward ball-
throwing, we observed no significant difference in landing
error between natural data collection (M = 0.611m,SD =
0.199m) and active data collection (M = 0.556m,SD =
0.263m); t(17) = 1.199, p = 0.247. By contrast, for the
task of backward ball-throwing, we observed a significant
difference in landing error between natural data collection
(M = 0.579m,SD = 0.406m) and active data collection
(M = 0.445m,SD = 0.217m); t(17) = 2.430, p < .05
with a small effect size (Cohen’s d = 0.40).

VI. DISCUSSION

The results of simulated data collection experiments con-
firm the efficacy of our method to significantly better shape
demonstration distribution into various types of target dis-
tributions, as compared with natural data collection. Fur-
thermore, the follow-up sensitivity analysis proves that our
method significantly outperformed the baseline to approx-
imate different types of target distributions under various
levels of data collection uncertainties, suggesting its strong



robustness for application.
Results of real-world experiments suggest that our method

better enabled the robot to obtain a more balanced distri-
bution of demonstrations than natural data collection. Also,
the results of the questionnaires reveal that our method was
able to better convey robot intentions and expectations to
human teachers. Furthermore, we observed benefits in robot
learning, with the models trained on more balanced demon-
stration data collected by our method showing significantly
better generalization ability to unseen situations. However,
the improvements in overall robot learning performance were
task-dependent and only confirmed in the task of backward
ball-throwing.

Our approach does not come without limitations. First, the
transition model of the data collection process was assumed
to follow a normal distribution, with the uncertainty of data
collection only reflected in the choice of the variance. In
reality, the mean might also be shifted and the choice of
variance could be different for each human teacher. Second,
our work only considered the cases of the scalar feature.
We leave it as future work to scale our approach to multi-
variate distributions. Finally, when applying our method to
real-world tasks, we chose the feature function based on
observation and heuristics. It might help to employ feature
engineering techniques (e.g., feature selection) to produce
better designs of feature functions and hopefully further
improve the robot learning performance.

VII. CONCLUSIONS

We presented an active data collection method that shapes
the distribution of demonstration data to given target dis-
tributions, taking into account the influence of robots on
human teacher behaviors. Simulated experiments validated
the method’s efficacy in distribution shaping and robust-
ness to different levels of data collection uncertainties.
Results of real-world tasks (i.e., forward and backward
ball-throwing) further showed significant improvements in
balancing demonstration data distribution and conveying the
robot’s intention to human teachers. When trained with
demonstrations collected by our method, the robot control
policies significantly outperformed those trained with natu-
rally collected demonstrations in both tasks. We leave it as
future work to scale our methods to cases of multivariate
distributions and integrate our method with advanced LfD
algorithms to enhance robot learning performance.
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